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The growth of secondary vortices on the braids separating Kelvin–Helmholtz billows
is investigated via numerical simulations. The similarity theory of Corcos & Sherman
(1976) is extended to include mixing processes with Prandtl number greater than unity,
and is shown to provide a useful description of the physics of the braid regions just
prior to the onset of secondary instability. The numerical study of Staquet (1995) is
extended to include a wider range of Prandtl numbers and bulk Richardson numbers.
Length and time scales of the secondary instability are compared with predictions
based on normal-mode stability analysis of the braids. The onset of instability is shown
to be accompanied by a dramatic increase in mixing efficiency in the braid region,
emphasizing the potential importance of preturbulent Kelvin–Helmholtz billows for
mixing stratified fluids.

1. Introduction
In many fluid systems, turbulence and mixing are governed by a competition

between large-scale shear and stable ambient density stratification. Kelvin–Helmholtz
(KH) instability of a stratified, parallel shear layer has been a standard model for this
class of flows since it was first described by Kelvin (1871). Recently, direct numerical
simulation (DNS) studies have added considerably to our understanding of this
instability and of the large-amplitude billows that emerge as a result (e.g. Caulfield &
Peltier 1994; Cortesi, Yadigaroglu & Banerjee 1998; Smyth 1999; Cortesi et al. 1999;
Smyth & Moum 2000a , b; Caulfield & Peltier 2000; Staquet 2000; Smyth, Moum &
Caldwell 2001). Of particular interest here is the discovery that the mixing efficiency
of KH billows is extraordinarily high in the preturbulent phase, then relaxes to the
canonical value of 0.2 after turbulence develops (e.g. Winters et al. 1995; Smyth &
Moum 2000b; Caulfield & Peltier 2000; Staquet 2000; Smyth et al. 2001; Staquet &
Bouruet-Aubertot 2001). In a typical DNS of a turbulent event driven by KH instabi-
lity, the preturbulent phase accounted for 1/4 of the net potential energy gain (Smyth
et al. 2001). This highly efficient mixing occurs largely in the braids, regions of intense
property gradients that separate individual billows.

Braids are regions of strongly sheared, nearly parallel flow, and thus have the
potential to develop secondary KH instability. Corcos & Sherman (1976) developed
a similarity theory for the braids and thereby predicted that the Richardson number
characterizing the stability of the braids would be inversely proportional to the square
root of the Reynolds number of the original shear layer. Therefore, at sufficiently
high Reynolds number, the necessary condition for shear instability (Miles 1961;
Howard 1961) would be fulfilled. This possibility is of interest here because secondary
instability has the potential to alter the mixing efficiency of preturbulent KH billows.
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With very few exceptions (Staquet 1991; Winters, MacKinnon & Mills 2003), direct
numerical simulations of KH instability have been carried out at Reynolds numbers
too low for secondary KH instability to develop. Evidence of secondary instability
has been seen in laboratory experiments (Thorpe 1968, 1981, 1987; Atsavapranee &
Gharib 1997) and in direct observations of flow in the ocean thermocline (Woods
1969). Staquet (1995) exploited the computational efficiency of two-dimensional
simulations to study KH billows at higher Reynolds numbers than had been possible
previously. She confirmed the validity of the Corcos–Sherman similarity theory for
the braids and successfully detected the secondary instability. She also identified a
new mode of instability that originates in the core regions and propagates onto the
braid.

In this paper, the work of Staquet (1995) is extended to cover a broader region of
parameter space. The focus is on smaller values of the initial bulk Richardson number
(i.e. weakly stratified or strongly sheared flows) and on higher values of the Prandtl
number. I also extend the similarity theory of Corcos & Sherman (1976) to cover
cases with Prandtl number greater than unity. The lower Richardson number cases
manifest secondary instability in a manner that is quite distinct from that seen in the
high Richardson number flows examined by Staquet (1995). The high Prandtl number
cases are needed, for example, to describe mixing of heat in water. Motivated by the
superficial similarity between secondary and primary KH billows, I conduct detailed
comparisons between the characteristics of secondary instability and the predictions
of normal-mode stability theory applied to the braids. This comparison reveals that
the secondary KH instability is actually a much more complex phenomenon than its
primary counterpart. Finally, I show that the growth of secondary instability leads to a
significant increase in mixing efficiency in the braid region, enhancing the importance
of preturbulent billows for mixing.

The discussion begins in § 2 with a description of the mathematical model, the
numerical methods used for the two-dimensional numerical simulations, and a
summary and extension of the similarity theory of Corcos & Sherman (1976). In
§ 3, I describe results from simulations conducted over a broad region of parameter
space. I test the similarity theory in detail, and investigate the effect of the initial flow
parameters (i.e. Reynolds, Prandtl and bulk Richardson numbers) on the development
of secondary instability. In § 4, I compute the stability characteristics of normal
modes of the flow in the vicinity of the braids and compare the results with the
empirically determined evolution of the secondary billows. Section 5 gives a discussion
of the mixing efficiency of the preturbulent flow, focusing on the effect of secondary
instability. Results are summarized in § 6.

2. Theoretical preliminaries
Early simulations of KH billows were, of necessity, conducted in two dimensions

(e.g. Patnaik, Sherman & Corcos 1976; Peltier, Halle & Clark 1978). While advances
in computer capacity have rendered this artifice unnecessary for some flows of interest,
two-dimensional simulations are still useful for exploring high Reynolds and Prandtl
number regimes. The results must be interpreted with caution, however, in the light
of the known presence of three-dimensional instabilities. As KH billows grow to large
amplitude, three-dimensional motions often appear first in the central regions of the
cores, and later in edges of the cores and the braids. Both the stability analyses
of Klaassen & Peltier (1991) and the direct numerical simulations of single KH
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billows by Caulfield & Peltier (2000) showed that increasing stratification increases
the dominance of core- over braid-centred three-dimensional instabilities.

Simulations of merging pairs of billows (Smyth 1999; Smyth & Moum 2000a) show
strong three-dimensional motions developing in the cores during merging, while the
braids remain substantially two-dimensional (though the results of Cortesi et al. (1998,
1999) suggest that the three-dimensionalization process is sensitive to the form of the
initial perturbation). More recent three-dimensional simulations (K. Winters 2003,
personal communication) have also shown that, under certain conditions, secondary
instability can develop on the braids while the primary billows are merging, and that
both the braids and the instability are purely two-dimensional during this process.
These results support the validity of Staquet’s (1995) two-dimensional studies of
secondary instability, and have inspired the present effort to extend Staquet’s results
to a wider region of parameter space. The three-dimensional results also suggest
caution in interpreting two-dimensional simulation results, especially flow evolution
within the cores.

In this section, I will describe the methodology used for the two-dimensional
simulations, as well as an extended version of the Corcos–Sherman similarity theory
for the braids. The section will close with a description of the braid identification and
curve-fitting methods used in comparing the simulated flows with the theory.

2.1. The mathematical model

The flow domain is measured by Cartesian coordinates x∗ and z∗ and time t∗,
where asterisks indicate dimensional variables that will be non-dimensionalized below.
The velocity field is assumed to be incompressible, and is therefore described by a
streamfunction ψ∗ and a scalar vorticity ω∗. These variables are non-dimenionalized
using length scale L, velocity scale V and time scale L/V characteristic of the initial
flow. Density is replaced by the non-dimensional scalar variable θ = −(ρ − ρ0)/�ρ,
where ρ is the fluid density, ρ0 is a constant representative value for ρ and �ρ is
a representative value for |ρ − ρ0|. Making the Boussinesq approximation, the model
equations become

∂θ

∂t
= −u

∂θ

∂x
− w

∂θ

∂z
+

1

Re0Pr
∇2θ,

∂ω

∂t
= −u

∂ω

∂x
− w

∂ω

∂z
+ Ri0

∂θ

∂x
+

1

Re0

∇2ω,

u = −∂ψ

∂z
, w =

∂ψ

∂x
, ∇2ψ = ω.




(2.1)

These equations contain three non-dimensional parameters: the Reynolds number
Re0 = V L/ν, the bulk Richardson number Ri0 = g�ρL/ρ0V

2 and the Prandtl number
Pr = ν/κ . The constants g, ν and κ represent gravitational acceleration, viscosity and
mass diffusivity, respectively. The subscripts on Re0 and Ri0 indicate that these are
initial values of parameters that change as the flow evolves.

2.2. Two-dimensional simulations

Simulations of two-dimensional KH billows are carried out in a horizontally periodic
domain with periodicity interval −Lx/2 <x <Lx/2 and vertical extent −Lz/2 <z <

Lz/2. The periodicity interval is Lx = 27.9, twice the wavelength of the fastest-growing
primary instability (e.g. Hazel 1972). The slight Ri0 dependence of this wavelength is
neglected. The domain height is set to Lz = 0.75Lx , sufficient to minimize the influence
of the upper and lower boundaries, where zero-flux conditions (∂θ/∂z = ω = 0) apply.
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Sequence Run # Re0 Pr Ri0 Grid size

Resolution 1 1000 1 0.08 512 × 768
2 1000 1 0.08 256 × 385
3 1000 1 0.08 192 × 289
4 1000 1 0.08 128 × 193
5 1000 1 0.08 96 × 145

Reynolds number 1 1000 1 0.08 512 × 768
6 2000 1 0.08 512 × 768
7 4000 1 0.08 512 × 768
8 6000 1 0.08 768 × 1153

Prandtl number 6 2000 1 0.08 512 × 768
9 2000 2 0.08 512 × 768

10 2000 3 0.08 768 × 1153
11 2000 5 0.08 1024 × 1537
12 2000 7 0.08 1024 × 1537

Richardson number 13 2000 1 0.04 512 × 768
14 2000 1 0.06 512 × 768
6 2000 1 0.08 512 × 768

15 2000 1 0.10 512 × 768
16 2000 1 0.12 512 × 768
17 2000 1 0.14 512 × 768
18 2000 1 0.16 512 × 768

Table 1. Parameter values for the various sequences of two-dimensional simulations.

Simulations are initialized with a parallel flow in which shear and stratification are
concentrated in a horizontal layer surrounding the plane z = 0:

ω(x, z, 0) = −sech2z, (2.2)

θ(x, z, 0) = tanh z. (2.3)

Added to this initial state is a vorticity perturbation designed to stimulate primary
and pairing instabilities:

ωpert = asech2z
{(

k2
o + 2(1 − 3 tanh2 z)

)
cos(kox) − b

(
k2

o

/
4 + 2(1 − 3 tanh2 z)

)
cos

(
1
2
kox

)}
(2.4)

where ko is the non-dimensional wavenumber of the fast-growing mode and a and
b are constants having the values 0.01 and 0.8, respectively. Because the initial
perturbation is weak enough to obey linear physics (i.e. a � 1), its precise form
has little effect on the quantities of interest here. (See Staquet (1995) for a detailed
discussion of the effects of significant variations in the initial perturbation.)

Computations are performed on a rectangular mesh xi; i = 1, 2, . . . , Nx , zk; k =
1, 2, . . . , Nz. Spatial discretization is Fourier pseudospectral in the horizontal and
fourth-order compact (Lele 1992) in the vertical. Because the pseudospectral scheme
used in the horizontal is intrinsically more accurate than the compact method used
in the vertical, the vertical grid spacing �z is chosen to be one half the horizontal
spacing �x. (Detailed tests of spatial resolution are described in § 3.) Time stepping
is accomplished using a third-order Adams–Bashforth method.

A dataset of eighteen simulations forms the basis for the present analyses. Sequences
of simulations were designed to examine the effects of variations in spatial resolution,
initial Reynolds number, Prantdl number and initial bulk Richardson number
(table 1).
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Figure 1. Evolution of the scalar field θ (x, z, t) for simulation #8. Colour indicates values
ranging from −1 (blue) to +1 (red).

Figure 1 shows a sample result. At t = 39 (figure 1a), the primary KH wavetrain has
reached maximum amplitude. The computational domain contains two billows and
two braids. By t = 60, pairing has begun. One braid has vanished. At the centre of the
remaining braid (x = z = 0) is a stagnation point, the nexus of much of the physics
to be discussed here. Pairing is well underway at t = 69, and secondary instability is
visible on the braid. By t =81, pairing is almost complete. Secondary billows have
reached large amplitude by this time and have, in some instances, paired.

2.3. Equilibrium similarity theory

I now describe the Corcos–Sherman similarity theory for the braid regions. This
development differs from Corcos & Sherman (1976) in that I focus only on steady-
state solutions and I extend the results to Pr> 1. I begin by rewriting the equations
of motion in a coordinate frame tilted at an angle φ counterclockwise from the
horizontal:

∂θ

∂t
= −u′ ∂θ

∂x ′ − w′ ∂θ

∂z′ +
1

Re0Pr
∇′2θ,

∂ω

∂t
= −u′ ∂ω

∂x ′ − w′ ∂ω

∂z′ + Ri0

(
cos ϕ

∂θ

∂x ′ − sin ϕ
∂θ

∂z′

)
+

1

Re0

∇′2ω,

u′ = −∂ψ ′

∂z′ , w′ =
∂ψ ′

∂x ′ , ∇′2ψ ′ = ω.




(2.5)

Primes indicate coordinate-dependent quantities evaluated in the tilted coordinate
system. The intention is that ϕ will be chosen so that the x ′-axis is locally parallel to
the braid.
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I now make three simplifying assumptions. I first assume that, for suitably chosen ϕ,
gradients in the z′-direction are much greater than those in x ′, so that the latter may
be neglected. The sole exception to this is the streamfunction, whose x ′ derivative,
w′, is retained and assumed to have the form w′ = −γ z′. The constant γ quantifies
a uniform strain field, oriented so that z′ is the direction of maximum compression.
Finally, I assume that the braid region is close to equilibrium, so that time derivatives
can be neglected.

The result of these assumptions is a pair of ordinary differential equations for the
scalar and vorticity fields in the vicinity of the braid:

0 = γ z′ dθ

dz′ +
1

Re0Pr

d2θ

dz′2 , (2.6)

0 = γ z′ dω

dz′ − Ri0 sin ϕ
dθ

dz′ +
1

Re0

d2ω

dz′2 . (2.7)

These equations describe a state in which the scalar profile θ(z′) is in equilibrium due
to a balance between compressive strain and diffusion, and the vorticity profile ω(z′)
is in equilibrium due to a balance among compressive strain, baroclinic torque and
viscosity. It will be seen that the braid approaches this equilibrium state late in the
pairing process.

The scalar equation (2.6) is easily solved to obtain

θ =
�θ

2
erf

(
π1/2

2

z′

δθ

)
(2.8)

in which �θ and δθ are constants. The scalar thickness δθ is given by

δθ =

(
π

2γRe0Pr

)1/2

. (2.9)

�θ , the net change in θ across the braid, is not determined. In practice, we will see
that its value is usually slightly less than 2, i.e. the scalar differential across the braid
contains nearly the entire scalar change across the domain. The maximum scalar
gradient occurs at z′ = 0 and is given by

θo
z′ =

�θ

2δθ

. (2.10)

Solution of the vorticity equation is less straightforward. I begin by defining the
similarity variables η and H :

η =
z′

δθ

, H (η) =
γPrδθ

2Ri0 sin ϕ�θ
ω(z′). (2.11)

In terms of these variables, the vorticity equation reduces to

d2H

dη2
+

2η

Pr

dH

dη
= e−η2

. (2.12)

For the special case Pr = 1, (2.12) has the solution

H = − 1
2
e−η2

. (2.13)

When Pr �= 1, (2.12) is most readily solved numerically. As shown in figure 2, the
numerical solution is fitted well by the more general Gaussian function

H = H0e
−(η/R)2 (2.14)
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Figure 2. Numerical solutions of (2.12) for representative values of the Prandtl number.
Because solutions are even, only the half-domain η > 0 is shown. Boundary conditions are
dH/dη = 0 at η = 0 and H → 0 as |η| → ∞. Fitted values of H0 and R are indicated.

where H0(Pr) = H |η=0 and R(Pr) is the ratio of the vorticity thickness to the scalar
thickness of the braid. The fit was performed using the Nelder–Mead simplex method
(Press et al. 1992) to minimize the squared error.

For most of the work described here, I focus on the range 1 � Pr � 7. In that range,
the dependence of the parameters R and H0 upon Pr is fitted well by the power laws

R = Prα, H0 = − 1
2
Prβ, (2.15)

with α = 0.3635 and β = 0.6307 (figure 3).
To summarize, the approximate solution of (2.7) for 1 � Pr � 7 is

ω(z′) = ωoexp[−(z′/δω)2], (2.16)

in which the maximum vorticity is

ωo = −
(

2

π

)1/2
Re0

1/2 Ri0 sin ϕ�θPrβ−1/2

γ 1/2
, (2.17)

and the vorticity thickness is

δω ≡ Rδθ =

(
π

2γRe0

)1/2
1

Pr1/2−α
. (2.18)

Note that, in the absence of buoyancy effects, δω would be independent of the Prandtl
number, i.e. α would equal one half. Thus, the non-zero value of 1/2 − α is a measure
of the effect of buoyancy forcing on the vorticity thickness of the braid. We may also
integrate (2.16) to obtain a theoretical profile for the braid-parallel velocity:

u′ =
�u

2
erf

(
π1/2

2

z′

δω

)
, (2.19)
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Figure 3. R(Pr) and H (Pr), obtained as shown in figure 2. Dashed curve: fit to (2.15) with
α = 0.3635 and β = 0.6307. These values are optimized for the range 1 � Pr � 7.

in which the velocity change across the braid is

�u = 2δωωo = −π1/2Ri0 sin ϕ�θPrα+β−1

γ
. (2.20)

In the following section, these predicted profile shapes will be compared with profiles
obtained from numerical simulations in order to validate the equilibrium similarity
theory.

The similarity theory also allows us to make a priori predictions about the
dependence of secondary instability upon the initial conditions as represented by the
parameters Re0, Pr and Ri0. These predictions will be tested in § 3, and will be extended
using explicit linear stability analyses in § 4. Unstable modes of a stratified shear layer
with similar shear and density scales grow exponentially with rate σ = Sf (Ri), where
S is the maximum shear and f is a non-dimensional, decreasing function of the bulk
Richardson number, Ri, that drops to zero for Ri> 1/4 (e.g. Hazel 1972). In the
present case, the maximum shear is found at the centre of the braid and is given by
ωo (cf. (2.17)), while the bulk Richardson number that characterizes the stability of
the braid is

Ri′ =
Ri0 cos ϕθo

z′

ωo 2
=

(2π)1/2γ 3/2Pr3/2−β

Re1/2
0 Ri0�θ sin ϕ tan ϕ

. (2.21)

The central vorticity and Richardson number of the braid are functions of six
parameters: the strain γ , the tilt angle ϕ, the scalar differential �θ , and the Reynolds,
Prandtl and Richardson numbers. The first two variables, γ and ϕ, represent the
large-scale structure of the primary KH instability; they depend somewhat on Ri0,
but very little on Re0 or Pr. The scalar differential �θ is usually slightly less than 2.0.

Since increasing Re0 both increases ωo and decreases Ri′, we can predict with
confidence that increasing Re0 promotes secondary instability (as did Corcos &
Sherman 1976). The effect of increasing Pr is ambiguous, since it increases ωo but
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also increases Ri′. The inverse proportionality of Ri′ to Ri0 reflects the fact that the
shear in the braid is driven by buoyancy effects. In the singular limit Ri0 → 0, this
mechanism for braid reinforcement is absent, and secondary instability occurs rarely
if ever (e.g. Dritschel et al. 1991). Increasing Ri0 leads to both increasing ωo and
decreasing Ri′, suggesting enhanced likelihood of secondary instability. We will see,
however, that this effect is complicated by the strong dependence of ϕ on Ri0.

2.4. Fitting procedures

In order to test the theoretical predictions of the previous subsection, we must have
methods for computing the relevant parameters from numerically simulated flow
fields. In this subsection, I describe those methods and give detailed examples of their
use at two times during a representative simulation. In the next section, the computed
parameters will be presented as continuous functions of time over the duration of
each simulation. The objectives are to identify a central portion of the braid in a
given set of computed flow fields, average along the braid to obtain profiles of θ(z′)
and u′(z′), and fit the results to appropriate functions in order to obtain values of the
braid parameters δθ , δω, �θ and ωo. When the primary KH billows are well into the
pairing phase (e.g. figure 1b), the fits are very close, and the details of the procedures
used to obtain the fits are of little consequence. At other times, however, the braid
can be far from its equilibrium state, and the fits must be done with care for the
results to be physically meaningful.

I begin by identifying a central portion of the braid. For each x in the range
−Lx/8 <x <Lx/8, I scan over z to find the height zb(x) at which the scalar gradient
magnitude |∇θ | is maximized. (First, the maximum value on the computational grid
is found, then it and the values at the two neighbouring grid points are fitted to a
parabola, the maximum of which furnishes the final value of zb.) Near equilibrium,
zb(x) is almost linear, but at other times the function exhibits significant curvature.
Therefore, taking account of the symmetry of the flow, I fit zb(x) to a cubic polynomial
of the form

zf (x) = af x + bf x3. (2.22)

With appropriate values for the coefficients, this function coincides almost exactly
with the maximum scalar gradient except when the braid is distorted by secondary
instability. In the latter situation, zf (x) provides a useful indication of the undisturbed
position of the braid, and thus a basis for measuring the amplitude of the instability.
The tilt angle ϕ is identified as the local slope of zf (x), i.e. tan ϕ = dzf /dx (figure 4).

I next repeat the scan over the reduced range −Lx/16< x < Lx/16, this time
identifying, at each xi , a line segment locally perpendicular to zf (xi) and having
length cos(ϕ)Lz/4. Along each line segment, a grid of points z′

j = j�z is defined,
where �z is the vertical spacing of the computational grid and z′ is the distance along
the line segment measured from its centre at xi, zf (xi). At each such point, values of
u′

i(z
′), w′

i(z
′) and θi(z

′) are computed via bilinear interpolation from the computational
grid and recorded. I complete this phase of the calculation by averaging over the
index i to obtain profiles u′(z′), w′(z′) and θ(z′), along with an averaged value of ϕ.

The next step is to fit these profiles to functions appropriate for comparison with
the equilibrium similarity scaling described above. Both θ(z′) and u′(z′) are fitted to a
function of the form

F (z′) = v1v2 erf

(√
π

4

z′ − v5

v2

)
+ v3z

′ + v4. (2.23)
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Figure 4. Schematic of braid coordinates. The thick curve represents a small segment near
the centre of the braid. The curvature of the braid segment is exaggerated. Dots represent the
line of points at which flow quantities are computed for a given i.

This function is a generalization of the equilibrium similarity solutions (2.8) and (2.19).
The thickness (scalar or vorticity, as the case may be) is given by v2. The gradient at
the centre of the braid is v1 + v3, and the net change across the braid is 2v1v2. The
constants v3, v4 and v5 are zero in (2.8) and (2.19). The fitted values of these constants
are also very nearly zero when the braid is close to equilibrium; they are included in
(2.23) so as to improve the fit, and thus to provide a meaningful description of the
braid, at earlier times in the flow evolution. These fits required solution of a nonlinear
optimization problem, and were performed using the Nelder–Mead simplex method
(Press et al. 1992).

The braid-perpendicular velocity w′(z′) is fitted to the general cubic polynomial

P (z′) = p1 + p2z
′ + p3z

′2 + p4z
′3. (2.24)

The strain rate γ is identified with minus the derivative of w′ at z′ = 0, i.e. γ = −p2.
The remaining coefficients p1, p3 and p4 are close to zero when the braid is near
equilibrium.

I close this section with an example of the analyses described above applied at two
separate times in a sample simulation with Re0 = 1000, Ri0 = 0.08 and Pr= 1. Figure 5
contains flow visualizations for this case. Figure 6 shows cross-profiles of scalar and
velocity, and table 2 shows the results of fitting the computed profiles to the forms
(2.23) and (2.24) described above at times t = 27 (figure 5a) and t = 72 (figure 5b).

At t =27, primary KH billows have attained large amplitude but have not yet begun
to pair (figure 5a). The profiles differ significantly from the theoretical equilibrium
forms. Both the θ- and the u′-profiles show strong gradients away from the braid, and
w′ exhibits strong curvature. Nevertheless, the fitted parameter values furnish useful
measures of scalar thickness (δθ = vθ2 = 0.038), vorticity thickness (δω = vu2 = 0.699),
net scalar differential across the braid (�θ = 2vθ1vθ2 = 1.42) and maximum vorticity
(ωo = vu1 = 0.844). The strain at the centre of the braid is γ = −p2 = 0.134.
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Figure 5. Merging KH billows in run #1, with Re0 = 1000, Ri0 = 0.08, Pr = 1 . Colour indicates
the scalar field θ , with values ranging from −1 (blue) to +1 (red). In (b), the braid is close to
the predicted equilibrium state. Indications of secondary instability appeared just before the
braid was engulfed by the collapsing core (c).
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Figure 6. Profiles of the scalar θ (a, d), the braid-parallel velocity u′ (b, e) and the
braid-perpendicular velocity w′ (c, f ) as functions of the braid-perpendicular coordinate
z′. Results are shown at t = 27 (a, b, c) and t =72 (d, e, f ). Dashed curves indicate fitted
functions as described in § 2.4.

t = 27
vθ 1.877 0.380 0.123 0.000 −0.004
vu 0.844 0.699 0.109 0.000 −0.004
p −0.001 −0.134 0.000 0.007

t = 72
vθ 7.433 0.128 0.032 0.000 0.000
vu 3.226 0.130 0.024 −0.001 0.000
p 0.000 −0.082 0.000 0.001

Table 2. Fitted values of the braid parameters for the flows shown in figure 5 and 6,
computed as described in § 2.4.
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At t = 72, pairing is well underway (figure 5b). The profile shapes closely resemble
the theoretical equilibrium forms, as may be seen by the reduced values of vθ3, vθ5,
vu3, vu5 and p4. The scalar thickness and the vorticity thickness are now nearly equal,
as we expect when Pr= 1 (δθ =0.128, δω = 0.130). The net scalar differential across
the braid is �θ = 1.90, close to the maximum possible value 2.0. The shear at the
braid centre has increased to ωo = 3.23, a four-fold increase over the value at t = 27,
while the strain has decreased to 0.082.

3. Braid evolution
In this section, I describe the evolution of the braids in numerical solutions of the

initial value problem described in § § 2.1 and 2.2. The objectives are (i) to examine the
structure of the braid during the pairing of the primary billows and compare with
the predictions of equilibrium similarity theory developed in § 2.3, and (ii) to investigate
the evolution of secondary instability on the braids as a function of the Reynolds,
Prandtl and Richardson numbers. The discussion begins in § 3.1 with introductory
discussions of the braid structure and the effects of spatial resolution in a relatively
simple example. I then describe the results of sequences of simulations in which Re0,
Pr and Ri0 were varied in turn (§ § 3.2, 3.3 and 3.4).

3.1. Primary instability, braid structure and spatial resolution

This preliminary discussion surveys results from run #1 (see figure 5). This was a case
with relatively low Reynolds number (Re0 = 1000), and was typical except in that it
did not develop secondary instability except possibly at the very end of the merging
process (figure 5c). Complications due to secondary instability will be introduced
later.

Both the tilt angle (figure 7a) and the strain rate (figure 7b) increased initially to
maximum values then decreased. The strain reached its maximum of 0.18 around
the time that the primary KH instability attained maximum amplitude and began to
pair. The angle continued to increase through the early part of the pairing process,
reaching a maximum of 40◦ near t =63. As the paired billows rotated past the point
of maximum vertical extent, the tilt angle decreased rapidly, then levelled off at a
value just under 30◦. During the same time, the strain decreased rapidly to a value
of 0.08. This approximate halving of the strain corresponds to the doubling of the
primary vortex spacing during pairing (e.g. Staquet 1995).

Both measures of the braid thickness (figures 7c and 7d) decreased by an order of
magnitude during the early growth of the primary instability, then stabilized at values
very close to those predicted by equilibrium similarity theory. The scalar differential
�θ stabilized at a value just below 2.0, indicating that the braid encompassed almost
the entire scalar change across the computational domain. (The velocity change
across the braid, not shown here, was only about 1/3 of the net change across the
domain.) The shear at the centre of the braid increased by a factor of 3 during
pairing. Correspondence with the prediction of equilibrium stability theory was not
as close as in the case of the length scales (figure 7c, d), but was quite good during
the two intervals 40< t < 50 and 75< t < 85, when the strain rate and the tilt angle
(figure 7a, b) evolved least rapidly. I conclude that, for this simulation at least,
equilibrium similarity theory adequately describes the braid shear when the properties
of the primary instability that govern the braid are slowly varying (i.e. when the
assumptions underlying the theory are satisfied).
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The accuracy of these simulations depends heavily on spatial resolution. Figure 8(a)
shows the evolution of the scalar thickness in a sequence of simulations similar to run
#1 except that the spatial resolution was varied. Reduced resolution is seen to result
in an unrealistically thick braid. Figure 8(b) shows the scalar thickness normalized
at each point in time by the value predicted by equilibrium similarity theory. In
the two simulations represented by the thick solid curve and the dashed curve (the
most finely resolved cases), the braid thicknesses matched both each other and the
theoretical value to within a few percent during the period 55< t < 75. In all other
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cases, resolution was coarser than this, and both convergence and agreement with the
theoretical scaling were significantly degraded. I regard the second case as marginally
resolved for the present purposes. In all of the simulations discussed below, the
resolution of the braid was intermediate between those of the first and second cases
shown in figure 8.

3.2. Dependence on the initial Reynolds number

Figure 9 shows representative properties of the braid during a sequence of four
simulations in which the Reynolds number was varied between 1000 (solid curve) and
6000 (dotted curve). The tilt angle and strain rate histories vary little with Re0, and
are thus nearly identical to those shown in figure 7(a, b). Both the minimum vorticity
thickness and the maximum vorticity varied by factors of 2.5 over this range of Re0.
In the Re0 = 6000 case, the braid thickness reached a minimum of 0.045 times the
initial shear layer thickness, while the maximum braid shear was over six times that
of the original shear layer. The Reynolds number dependence of the braid thickness
is collapsed to within 10% by the theoretical scaling. The braid shear is not described
as accurately: the simulated braid shears tended to drop below the equilibrium value
after about t =60. Nevertheless, the variability due to Reynolds number is reduced
from a factor of 2.5 to a few tens of percent by the equilibrium scaling.

In the Re0 = 6000 case, beginning around t = 60, both the braid thickness and
the shear departed rapidly from the equilibrium scaling. This is the signature of
secondary instability. The same behaviour is evident at later times in the Re0 = 4000
and Re0 = 2000 cases. The Re0 = 1000 case shows no evidence of secondary instability.
Figure 10 shows the θ-field for the Re0 = 4000 case after the secondary billows had
grown to large amplitude. Billows occur in three distinct groups. At the stagnation
point (near the centre of the image), a pair of small billows is just emerging. The
large billows to the left and right of the stagnation point emerged in similar fashion
originally, and have now grown while being advected outward by the extensional
strain. Further to the right is a periodic train of three billows, followed by a smaller
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Figure 10. Scalar field θ (x, z, t) for simulation #7 at t = 78, showing secondary billows.
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fourth billow. This group first appeared just to the left of the position shown and is
propagating to the right . Below and to the right of each of these billows is a weaker
vortex of opposite sign, suggesting the sinuous instability of a jet originating at the
edge of the core. This indicates the influence of the ‘near-core’ instability discovered
by Staquet (1995). A corresponding, though somewhat weaker, train of secondary
billows is visible at the left-hand end of the braid.

3.3. Dependence on the Prandtl number

Braid properties for a sequence of cases with Prandtl numbers ranging from 1 to
7 are shown in figure 11. The tilt angle and strain rate are not shown, as they are
insensitive to Pr and evolve nearly as shown in figure 7(a, b). The scalar thickness
δθ of the braid varies strongly as a function of Prandtl number (figure 11a). The
equilibrium scaling (2.9) collapses this variability very effectively when the braid is
near equilibrium (figure 11b, t ∼ 40–60). Also well described by the theoretical scaling
are the weaker dependence of the vorticity thickness on Pr (figure 11c, d), and that
of the scale ratio (figure 11e, f ), in the interval 40 < t < 60. Fits are poor at earlier
times because the braid has not yet attained its equilibrium state, and at later times
because the equilibrium is upset by secondary instability.

Rapid departures of the layer thicknesses from equilibrium scaling (figure 11b, d ,
t > 60) happen first in the higher Prantdl number cases. Therefore, although attempts
to predict the dependence of secondary instability on Prandtl number based on
equilibrium similarity theory were inconclusive (§ 2.3), it is clear that instability
appeared first at high Prandtl numbers. Figure 12 shows the evolution of several
quantities related to the stability of the braid as computed from the simulations.
As predicted by the theory, the braid shear increased slightly with increasing Prandtl
number (figure 12a); however, the stabilizing scalar gradient across the braid increased
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much more dramatically (figure 12b). The braid Richardson number, which quantifies
the competition between these two effects, increased with increasing Pr as predicted
by the theory. In addition, the braid Reynolds number Re′ = δ2

ωωo/ν decreased with
increasing Pr. These latter two results suggest that increasing Pr should stabilize the
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braid. Apparently, though, the slight increase of ωo with Pr dominates and causes
higher values of Pr to favour secondary instability.

Figure 13 shows the Pr =7 case at an advanced stage, just as the braid was about
to be engulfed by the cores. Three pairs of secondary billows are visible. Each pair
appeared originally at the stagnation point and was subsequently advected away as
it grew. Periodic trains of billows like those seen in the Re0 = 4000, Pr = 1 case (figure
10) appeared briefly but had been advected into the cores by the time shown here.
Note that the small-scale details of the flow within the core region are likely to be
inaccurate at this late time due to the suppression of three-dimensional instabilities.
Even the largest of the secondary billows might manifest three-dimensional features
by this late stage, if the model allowed it.

3.4. Dependence on the initial bulk Richardson number

Unlike Re0 and Pr, the initial bulk Richardson number, Ri0, is a dominant factor
governing the evolution of the primary KH instability. Figures 14(a) and 14(b) show
tilt angle and strain rate histories from a sequence of simulations in which Ri0 was
varied between 0.04 (thick solid curve) and 0.16 (thin dash-dotted curve). The latter
value is close to the value 0.167 employed in the simulations of Staquet (1991, 1995).

Much of the variability due to changes in Ri0 is simply a difference in time scales:
the primary instability grows and pairs more slowly in high Ri0 cases than in low
Ri0 cases. Increasing Ri0 resulted in a large decrease in the maximum tilt angle. As
Ri0 is increased, the work that must be done against gravity to generate a steep
tilt angle increases relative to the kinetic energy available to accomplish that work.
Increasing Ri0 also led to a slight decrease in the maximum strain rate for all except
the largest value tested, Ri0 = 0.16. In that case, the strain rate increased temporarily
near t =100, then decreased rapidly.
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The scalar thickness δθ also reflects the tendency of flows with larger Ri0 to evolve on
longer time scales (figure 14c). In each case, the thickness reached a minimum shortly
after the strain reached its maximum. As predicted by the equilibrium similarity
theory, this minimum value did not depend on Ri0 (cf. equation (2.9)). The common
minimum value was 0.075, which has already been shown to compare well with the
predicted value (figure 11a, thick solid curve). In each case except Ri0 = 0.04, the onset
of secondary instability was signalled by a sharp increase in δθ . (In the Ri0 = 0.04
case, secondary instability did not occur. Instead, the braid was engulfed by the
collapsing core at about t = 75.) The increase in δθ was particularly dramatic in the
case Ri0 = 0.16.

The net change in the scalar field across the braid, �θ , is also a strong function of
Ri0 (figure 14d). The maximum possible value of �θ is 2.0. At the smallest Ri0 tested,
�θ increased to a value very close to this. Maximum values decreased slightly in the
Ri0 = 0.06 and 0.08 cases, then more dramatically with further increases in Ri0. In the
Ri0 = 0.12 case, the onset of secondary instability was preceded by a slight decrease
in �θ . This reduction was greater in the Ri0 = 0.14 and 0.16 cases. In the latter case,
the fitted value of �θ oscillated rapidly after t = 100, indicating that the shape of the
θ(z′) profile no longer matched the theoretical prediction. This effect is also evident
in the behaviour of δθ for the same case (figure 14c).

Figure 15 shows histories of three quantities related to secondary instability. For
visual clarity, the Ri0 = 0.10 and 0.14 cases have been omitted from this diagram. In
the low Ri0 cases, there is a clear inverse relationship between Ri0 and the braid shear
(figure 15a). The braid shear dropped below its equilibrium value after t = 50, then
recovered. The inverse relationship between Ri0 and the braid Richardson number
(figure 15b) is not seen in the simulation results, except that the Ri0 = 0.08 and 0.10
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cases achieved lower Ri′ values near the end of the simulations than did the Ri0 = 0.04
case. The absence of the inverse relationship at higher Ri0 may be traced back to the
Ri0 dependence of the tilt angle φ and the scalar differential �θ (figure 14a, d), both of
which tend to decrease with increasing Ri0. Note that Ri′ often exceeded its equilibrium
value by 50% or more just before the onset of secondary instability. The absence of
secondary instability in the Ri0 = 0.04 case can also be understood in terms of the
braid Reynolds number, Re′ (figure 15c). Re′ dropped to low values around t =50
then recovered in all cases, but values were generally lowest in the Ri0 = 0.04 case.
Values of Re′ agree closely with equilibrium theory in the final stages of all simulations.

As we have seen, the behaviour of the most strongly stratified case (Ri0 = 0.16,
thin dash-dotted curves on figure 15) was distinctive in many respects. The stable
stratification was strong enough in comparison to the shear that the primary KH
instability grew very slowly, and the pairing instability was strongly inhibited. From
t = 50 to t =100, the braid shear remained steady at the equilibrium value. After this
time, the shear remained nearly constant, even though the equilibrium value dropped
sharply due to the decrease in γ (figure 14b). This discrepancy with the theoretical
prediction is reflected in the sharp rise of the scaled curve in the right-hand frame
of figure 15(a) after t = 100. During this same interval, the braid Richardson number
(figure 15b) dropped rapidly to values near 0.02. This decrease was due to a sudden
decrease in the stratification within the braid, the reason for which will be apparent
presently. Shortly after this, secondary instability appeared.

Figure 16 illustrates dramatic differences in the evolution of secondary instability as
a function of initial Richardson number. Each pair of frames shows the θ-field at two
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successive times, separated by an interval of 3.0, shortly after the first appearance of
secondary instability. The Ri0 = 0.04 case is omitted because it did not develop second-
ary instability. In the Ri0 = 0.06 case, a pair of secondary billows appeared on either
side of the stagnation point. At the later time, the billows had grown and propagated
outward away from the stagnation point. The same pattern is evident in the Ri0 = 0.08
and 0.10 cases (figure 16b, c). The initial length scale of these disturbances was
significantly longer than those seen at higher Re0 (figure 10) and higher Pr (figure 13).
In the Ri0 = 0.12 and 0.14 cases, a single secondary billow appeared near the stagnation
point, then propagated slowly to the left as it grew. This suggests the existence of
two branches of secondary instability, one that generates secondary billows in pairs
straddling the stagnation point, and one that creates a single billow at the stagnation
point. At Ri0 = 0.16, pairs of secondary billows are again evident (figure 16f ). After
about t = 126, four large secondary billows developed on the braid. However, they did
not emerge from the stagnation point, and propagated only slowly in the x ′-direction.

In most cases, secondary billows also developed in the regions where the core
meets the braid. We must interpret these results with caution, however, because the
outer edge of the core is a prime site for three-dimensional secondary instabilities in
strongly stratified flows (Klaassen & Peltier 1991; Caulfield & Peltier 2000).

The cases shown in figure 16 also differ in the manner in which the core collapsed
onto the braid. In the low Ri0 cases, this collapse occurred all at once after the
secondary billows had attained large amplitude. In the strongly stratified cases, the
core did not so much collapse as spread gradually outward into the braid region.
This effect was most clearly evident in the Ri0 = 0.16 case, in which mixed fluid from
the core (shown in yellow and light blue) had been advected along the entire length
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of the braid by the time secondary instability appeared. This incursion of mixed fluid
from the core into the braid explains the rapid increase in braid thickness (figure 14d)
and the rapid decrease in braid Richardson number (figure 15b) in the Ri0 = 0.16 case
after t = 100. Evidently, the growth of the secondary instability was accelerated, or
possibly even caused, by the influx of mixed fluid from the core. This process is also
evident, though to a lesser extent, in the Ri0 = 0.14 case (figure 16e). In the Ri0 = 0.12,
0.10 and 0.08 cases (figures 16d , 16c and 16b), the flux of fluid from the cores was
underway, but it had not yet reached the region of the secondary billows by the time
they began to grow.

This incursion of fluid from the core to the braid suggests the near-core instability
described by Staquet (1995). It represents a qualitative difference in the physics of the
secondary instability between the low Ri0 and high Ri0 cases.

4. Normal-mode stability analysis
Corcos & Sherman (1976) were led to predict the existence of the secondary

KH instability by the inverse dependence between braid Richardson number and
Reynolds number, i.e. for sufficiently high Re0, Ri′ will always be less than 1/4 (cf.
(2.21)). This reasoning is based on the well-known characteristics of inviscid non-
diffusive horizontal steady shear flows (e.g. Miles 1961; Hazel 1972). Clearly, though,
the braid region is more complex than this. For one thing, because of the non-zero tilt
angle, the braid-parallel component of the gravitational acceleration that drives the
shear across the braid must also act on any perturbation. In addition, the braid is thin
enough that viscous and diffusive effects are important. (We have already examined
this effect in part via the braid Reynolds number, e.g. figure 15c). Thirdly, the braid is
not perfectly steady, but rather is part of an evolving flow. Finally, the braid is subject
to a strong straining deformation. All of these effects except for the last two can be
incorporated into a normal-mode stability analysis. Away from stability boundaries,
the time dependence of the braid is unlikely to affect the results significantly as it is
slow compared with the rate at which secondary KH instabilities grow. In contrast,
the neglect of strain is a serious shortcoming. These caveats notwithstanding, the
normal-mode model represents a significant refinement of previous ideas based on
consideration of the Richardson number alone. In this section, I will assess the degree
to which normal-mode stability theory can describe the secondary KH instability.

The analysis begins with the identification of the equilibrium flow, whose stability is
to be tested, with the braid-perpendicular profiles defined in § 2.4: U = u′(z′); Θ = θ(z′).
The braid-perpendicular velocity w′ is ignored. I then assume that the flow consists
of these profiles plus a small perturbation having the normal-mode form

θ(x ′, z′, t) = θ̂ (z′) eσ t+ikx ′
,

ω(x ′, z′, t) = ω̂(z′) eσ t+ikx ′
,

}
(4.1)

in which k is a real non-dimensional wavenumber, σ is the corresponding complex
growth rate, θ̂ and ω̂ are complex functions of z′ and only the real parts of the right-
hand sides are physically relevant. This normal-mode solution is consistent with
the assumptions of stationarity and homogeneity in x ′ that underlie the equilibrium
similarity theory, the validity of which was assessed in § 3. Substituting these expres-
sions into (2.5) and ignoring products of perturbation quantities leads to[

A11 A12

A21 A22

](
ω̂

θ̂

)
= σ

(
ω̂

θ̂

)
(4.2)
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where the elements of the array A are the following ordinary differential operators:

A11 = −ikU + ik
d2U

dz′2 ∇−2 +
1

Re0

∇2, A12 = Ri0(ik cos ϕ + sinϕ∂z′),

A21 = −ikRi0
dΘ

dz′ ∇−2, A22 = −ikU +
1

Re0Pr
∇2.




(4.3)

The operator ∇−2 represents the inverse of the Laplacian d2/dz′2 − k2 subject to
homogeneous Dirichlet conditions at boundaries located far enough from the braid
to have no significant effect. Discretizing the z′-dependence using fourth-order
compact derivatives (Lele 1992) converts (4.2) into an algebraic matrix equation
that can be solved using standard methods. The result is the dispersion equation
σ = σ (k; Re, Pr, Ri, ϕ, U, Θ). For a given set of profiles and parameter values, the
fastest-growing mode (FGM) is the mode that maximizes the real part of σ as a
function of k. For all cases considered here, σ is purely real.

Although this analysis cannot include the effects of strain explicitly, those effects
can be accounted for after the fact in a non-rigorous but intuitively appealing
way. Advection by the extensional strain is expected to increase the wavelength of
any disturbance, and thus to decrease k, exponentially at rate γ . Instability causes
disturbances to expand exponentially in the braid-perpendicular direction at rate σ ,
while the strain acts to compress disturbances in the same direction at rate γ . The
net growth rate is therefore estimated as σ − γ (Staquet 1991).

Quantitative comparison of the wavenumber and growth rate predicted using
normal-mode stability analysis with the corresponding properties of secondary billows
is non-trivial, owing to the difficulty of defining those properties for a billow growing
on a complex evolving background flow. Figure 17(a) shows the amplitude of the
secondary instability at selected times during run #7. This amplitude is calculated as
the perpendicular displacement between the braid centre zb and the cubic fit zf as
described in § 2.4. At each of the three times shown, a prominent wave-like disturbance
is visible to the left of the stagnation point x ′ = 0. This disturbance corresponds to the
early form of the secondary billow visible near x = −5 in figure 10. Closer inspection
shows that the length scale of the disturbance is about 3.6, so the wavenumber is
about 1.8. As shown in figure 17(b), this disturbance grew exponentially with growth
rate 0.35.
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Figure 18. Normal-mode dispersion relation for the braid in simulation #7 at t = 66.

Figure 18 shows the dispersion relation σ (k) computed for this flow at t =66. The
FGM had wavenumber k = 4.6 and growth rate σ = 0.69. Evidently, the measured
disturbance exhibits both smaller wavenumber and slower growth than the FGM.
These discrepancies, however, are what we would expect as a result of the strain. At
t = 66, the strain rate was γ = 0.11. If the wavenumber were decreasing exponentially
at this rate, it would require a time interval of 9 to decrease to the measured value of
1.8. This is consistent with the time scale over which the secondary billow appears to
have grown. (On the other hand, no such growth is evident over the interval shown
in figure 17.) At k = 1.8, the predicted growth rate from the normal-mode analysis
(figure 18) is 0.44. If we assume that the net effect of the strain is to reduce the growth
rate by an amount γ , then we would expect a net growth rate of 0.33. This compares
quite favourably with the growth rate 0.35 obtained empirically from the simulation.
This comparison has been made for other cases with similar results. The length scale
of the secondary billows tends to be longer than that of the FGM by an amount
that is broadly consistent with exponential spreading by the strain field, while the
growth rate matches to within a few tens of percent after the theoretical value σ for
the observed wavenumber is reduced to σ − γ .

The top row of figure 19 shows the predicted growth rate σ − γ of the FGM as
a function of time for most of the simulations discussed previously. (Because γ is
generally much smaller than σ , the behaviour of σ is not much different from that
of σ − γ , so I have only shown the latter. Also note that the strain-induced decrease
of the wavenumber is not considered in this calculation.) The growth rate increases
strongly with increasing Reynolds number (figure 19a), and maximum growth rates
also occur earlier in the high Re0 cases. This corresponds to the early appearance of
secondary instability in those cases (cf. figure 9a, right-hand frame). The Re0 = 1000
case (solid curve) attained a much lower maximum growth rate than did the other
cases, and it did not produce secondary instability until the end of the simulation
(figure 5c). Increasing Prandtl number (figure 19b) has a more subtle effect: there is
no systematic increase in the maximum growth rate with Pr, but that maximum does
occur significantly earlier in the high Pr cases. This is consistent with the simulation
results described in § 3.3. As was found in § 3.4, the influence of the bulk Richardson
number Ri0 is complicated due to its order-zero effects on the primary instability
(figure 19c). In general, the higher Ri0 cases take longer to attain maximum growth
rate. The largest growth rate occurs at t = 57 for the case Ri0 = 0.10 (dotted curve).
The Ri0 = 0.04 case (thick solid curve) attained a much lower maximum growth
rate than did the other flows, and it failed, correspondingly, to develop secondary
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Figure 19. Top row: predicted growth rate σ − γ of the fastest growing mode of the braid,
considered as a parallel shear flow in equilibrium, at various times during the evolution of the
primary KH instability. The parameter varied is indicated at the top; labels in the upper frames
indicate extremal values. Second row: ratio of growth rate σ to strain rate γ . Bottom row:
ratio of braid shear ωo to strain rate. (a) Curve types are as given in the caption to figure 9.
(b) Curve types are as given in the caption to figure 12. (c) Curve types are as given in the
caption to figure 14.

instability. The Ri0 = 0.16 case attained a temporary maximum in σ − γ at t = 80, but
it did not develop secondary billows until σ − γ increased again after t = 100.

The second row of figure 19 gives the ratio σ/γ . This ratio is a likely candidate
to be the basis of an empirical criterion for secondary instability. The only case that
never developed secondary instability (figure 19c, solid curve) also never attained a
value greater than 5 for this ratio. In all other cases, instability developed shortly after
σ/γ passed the value 6. Both the two highest Reynolds number cases (figure 19a,
dotted and dash-dotted curves) and the two highest Prandtl number cases (figure 19b,
dotted and thin solid curves) exhibited secondary instability after just barely attaining
this value. (Note that these flows attain maximum σ early in the pairing process,
while the strain field is still at its maximum. Thus, the ratio σ/γ is relatively small
despite the large values of σ predicted for these cases.) In contrast, the low Re0 case
(figure 19a, solid curve) remained stable after achieving a value of 6.5 (near t = 75),
and developed instability only after σ/γ reached much higher values near the end of
the simulation as the braid was being engulfed by the core (cf. figure 5c).

The bottom row of figure 19 shows the ratio of braid shear to strain, i.e. ω0/γ , the
basis of the empirical criterion for instability proposed by Staquet (1995). Remarkably,
this ratio was very nearly proportional to σ/γ in all cases, indicating that the normal-
mode growth rate is nearly proportional to the shear despite the effects of stratification,
viscosity, diffusion and braid tilt, all of which acts to upset this proportionality. Staquet
(1995) proposed the critical value 54 for this ratio. The present results suggest that a
value in the range 35–40 is sufficient to produce secondary instability.
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Ultimately, the Staquet criterion is of superior utility because it can be evaluated
without the need for the normal-mode stability analysis. Both criteria give incomplete
descriptions of the physics of secondary instability though, as is clear from the fact
that they are well satisfied for the Re= 1000 case (figure 19a, thick solid curve) long
before instability appears and, conversely, the high Reynolds and Prantdl number
cases develop robust instability after satisfying the criteria only marginally.

5. The efficiency of mixing
In practical applications, mixing efficiency is a crucial property of any turbulent (or

preturbulent) flow. The extraordinary mixing efficiency of preturbulent KH billows
(e.g. Winters et al. 1995; Smyth et al. 2001) is the main motivation for examining the
physics of such flows at the present level of detail. While a comprehensive view of
mixing must await three-dimensional direct simulations at high Re0, the present results
are sufficient to indicate the essential effect (i.e. increase or decrease) of secondary
instability on mixing efficiency.

Because the energetics of mixing in stratified flow is complicated by gravity waves,
it is standard to quantify mixing efficiency using the flux coefficient, Γ , which is the
ratio of irreversible potential energy gain to kinetic energy dissipation. Following
Winters et al. (1995), I define the background potential energy, Pb, as the minimum
potential energy achievable via adiabatic reordering of fluid parcels. (In practice, this
reordering is accomplished by a simple sorting of the θ-array.) After this reordering,
the fluid parcel located originally at (x, z) will have vertical coordinate z∗(x, z). The
background potential energy is then given by

Pb = −Ri0

∫
θz∗ dx dz, (5.1)

where the integral is taken over the computational domain. The rate of increase of
Pb due to mixing may be written as

dPb

dt
=

∫
Ri0

Re0Pr
∇θ · ∇z∗ dx dz. (5.2)

(Equation (5.2) is obtained from equation (14) of Winters et al. (1995) using a
standard vector identity and neglecting changes in Pb due to boundary fluxes.) The
rate at which kinetic energy is dissipated via friction is given by

ε =

∫
1

Re0

[4(∂u/∂x)2 + (∂u/∂z + ∂w/∂x)2] dx dx, (5.3)

and the flux coefficient is then

Γ =
dPb/dt

ε
. (5.4)

Ideally, this computation is done on fully three-dimensional flow fields. In the
present study, the artifice of two-dimensionality has been adopted in order to gain
access to higher Reynolds number flows. The main cost of this artifice is a loss of
accuracy in the cores, where three-dimensional motions would develop rapidly were
they not suppressed. When assessing the effect of secondary instability on mixing
efficiency, the computations must be arranged so as to minimize this loss of accuracy.
I do this by defining a time-dependent subset B of the computational domain to
represent the braids, and performing the integrals in (5.2) and (5.3) over that area
only. (There will still be an influence from the cores via the computation of z∗, but it
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Figure 20. (a) Local dissipation rate, computed as the integrand of (5.3), for run #6 at t = 81.
Solid curves indicate the boundaries of the braid sample region, B . (b) Local contribution to
the irreversible potential energy gain, computed as the integrand of (5.2), for the same flow.
Values on the scale denote the common logarithm of either field.

is expected to be small.) B is defined as the area |z − zf (x)| < 1.5, where zf is the cubic
approximation to the braid defined as in (2.22). For the present purpose, the braid
sample is extended from −Lx/4 to Lx/4. Figure 20 shows the local dissipation rate
[4(∂u/∂x)2 + (∂u/∂z + ∂w/∂x)2]/Re0 and the local contribution to the irreversible
potential energy gain ∇θ · ∇z∗Ri0/Re0Pr for a representative case. Both quantities
exhibit highly compact spatial support. The braid region B is delineated by the solid
curves on figure 20(a).

Figure 21 shows histories of dPb/dt , ε and Γ for the sequence of runs described in
§ 3.2. For each case, Ri0 = 0.08 and Pr = 1. Reynolds numbers range from 1000 (solid
curve) to 6000 (dotted curve). During the initial growth and pairing of the primary
KH instability, irreversible potential energy gain (figure 21a) was greatest for low
Re0. The same is true of the kinetic energy dissipation rate (figure 21b). To interpret
this result properly, we must keep in mind that all quantities are non-dimensionalized
using the same length and velocity scales that define the Reynolds number; thus,
varying Re0 is best thought of as equivalent to varying the viscosity. It is therefore
not surprising that the low Re0 (most viscous) cases mix most rapidly in this scaling.

Shortly after t =60, the Re0 = 6000 case exhibited a rapid increase in dPb/dt .
This time corresponds to the onset of secondary instability. Comparable increases in
dPb/dt occurred at later times in the Re0 = 4000 and Re0 = 2000 cases, but not in the
Re0 = 1000 case (for which secondary instability did not occur until just before the
braids were engulfed by the collapsing core). During the same time period, the dissipa-
tion rate showed no such increase, but instead decreased in every case. These results
suggest that onset of secondary instability was accompanied by a rapid acceleration
of irreversible potential energy gain and a moderate slowing of viscous dissipation.

The effect of secondary instability is expressed very clearly in the evolution of
the flux coefficient, Γ (figure 21c). Γ was nearly independent of Reynolds number
during the initial growth and pairing phases, but increased dramatically as secondary
instability appeared in the Re0 = 6000, 4000 and 2000 cases in turn.

Mixing efficiency is known to be a strong function of the Prandtl number (e.g. Smyth
et al. 2001). This is reflected in the dependence of Γ (t) on Pr shown in figure 22.
Just prior to the onset of secondary instability, values range from 2.0 in the Pr = 1
case down to 0.5 in the Pr= 7 case. These values are consistent with the results
obtained by Smyth et al. (2001) in three-dimensional simulations over the same range



Secondary Kelvin–Helmholtz instability in stratified shear flow 93

0

2

4

6

20 40 60 80
t

Γ

(c)

0

ε

(b)

0.01

0.02

0.03

0.04

0

0.05

0.10
(a)

Re0 = 1000

d
P b

/d
t

6000

Figure 21. (a) Rate of irreversible potential energy increase, (b) rate of kinetic energy
dissipation and (c) the ratio Γ . Only contributions from the braid region B are included.
Curve types indicate initial Reynolds number: thick solid curve: run #1 (Re0 = 1000); dashed
curve: run #6 (Re0 = 2000); dash-dotted curve: run #7 (Re0 = 4000); dotted curve: run #8
(Re0 = 6000). In all cases, Ri0 = 0.08, Pr= 1 .

of Pr (cf. figure 12 of that paper). The three-dimensional simulations were at lower
Reynolds number, but we know that Γ is insensitive to Re0 in this flow regime.
The essential difference between the present simulations and those of Smyth et al.
(2001) is the dimensionality, and the correspondence noted here indicates that the
essential physics of the braid region is accurately represented in our two-dimensional
model. This correspondence with lower Reynolds number results ends abruptly with
the onset of secondary instability, which precipitates a dramatic increase of Γ in each
case. Because secondary instability appears earliest in the high Pr cases, those flows
soon exhibit Γ values close to those of the lower Pr cases. At t = 75, the Pr= 7 case
actually exhibits the highest mixing efficiency. Subsequently, values of Γ increase into
the range 2.5–4.5 in all cases.

The dependence of Γ (t) on the initial bulk Richardson number is shown in figure 23.
In the Ri0 = 0.04 case, the braid was engulfed by the collapsing core near t =75, before
secondary instability could develop. In all other cases, secondary instability led to a
rapid increase in Γ (t). The most rapid increases occurred in the Ri0 = 0.08 and 0.10
cases.
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Figure 23. Evolution of Γ for various Ri. Only contributions from the braid region B are
included. Curve types indicate initial bulk Richardson number: thick solid curve: run #13
(Ri0 = 0.04); thick dashed curve: run #14 (Ri0 = 0.06); dash-dotted curve: run #6 (Ri0 = 0.08);
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It must be emphasized that these results are approximate and pertain to the braid
region only. The high values of Γ seen here might not be reproduced if the computa-
tion were done over the entire domain of a three-dimensional flow. Nevertheless, the
present results do suggest strongly that the effect of secondary instability is to increase
mixing efficiency.
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6. Discussion
I have described two-dimensional simulations of merging KH billows, focusing

the analysis on the initial growth of secondary KH instability on the braids. This
work extends the results of Staquet (1995) to lower bulk Richardson numbers
(0.04 � Ri0 � 0.16) and higher Prandtl numbers (1 � Pr � 7). The secondary instability
appears over most of this parameter range when the Reynolds number exceeds ∼ 1000.
I have also extended the equilibrium similarity theory of Corcos & Sherman (1976)
to Prandtl numbers greater than unity, and have shown that the theory provides a
useful description of the physics of the braid just prior to the onset of secondary
instability.

As predicted by Corcos & Sherman (1976), the tendency towards secondary instabi-
lity increases strongly with increasing Reynolds number. This is due mainly to that
fact that the strain field is able to compress the braid more effectively, leading to a
stronger shear across the braid. Increasing Prandtl number has a similar effect, albeit
less pronounced. (According to the equilibrium theory, the shear across the braid
is proportional to Re0.50

0 and to Pr0.13, cf. (2.17).) Increasing Pr decreases the scalar
thickness of the braid directly, and the vorticity thickness indirectly by decreasing the
length scale over which the baroclinic torque acts.

The effects of varying the initial bulk Richardson number are complicated because
Ri0 also has an order-zero effect on the primary KH instability. At sufficiently low
Ri0, secondary instability is weak and the braid is engulfed by the collapsing core
before secondary billows can develop. In the limit Ri0 → 0, the baroclinic torque that
drives the braid shear is absent, and secondary instability is rarely observed (Dritschel
et al. 1991). For Ri0 greater than about 0.12 (including the value 0.167 studied by
Staquet (1995)), secondary instability is influenced by a flux of mixed fluid from the
core onto the braid.

For Ri0 in the range 0.06–0.12, secondary instability is not affected by the collapsing
core, i.e. it is governed solely by the local properties of the braid. Secondary billows
may be created either singly or in pairs straddling the stagnation point. The evolution
of billows created in pairs appears to depend upon a competition between the
extensional strain and the pairing instability (e.g. Klaassen & Peltier 1989). The
former effect advects the secondary billows outward away from the stagnation point,
while the latter merges them into a single stationary billow. In most cases studied here,
the former effect dominated, i.e. pairs of billows propagated outward as they grew, but
in the example shown in figure 10, the two innermost secondary billows subsequently
merged and remained at the stagnation point. The causes of this multiplicity of
behaviours, and the regions of parameter space in which each dominates, remain to
be explored.

Atsavapranee & Gharib (1997) documented secondary KH billows in laboratory
experiments using the tilted tube technique of Thorpe (1968). Estimated values
of the bulk Richardson number for cases in which secondary billows appeared
were 0.043 and 0.026 (their figures 8 and 11, respectively). The initial Reynolds
number was defined using the full thickness, not the half-thickness, of the shear layer,
resulting in values for Re0 around 2000. For comparison with the present results,
however, the appropriate value is based on the half-thickness and is therefore ∼ 500.
While these parameter values are all below the ranges in which I have found
secondary billows in the present work, the Prandtl (or Schmidt) number in the
experiments was 600, much higher than the highest value attained here. The high
Prandtl number may have compensated for the suboptimal Richardson and Reynolds
numbers. More extensive laboratory explorations of the parameter space in which
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secondary KH instabilities appear could add greatly to our understanding of this
instability.

Mixing efficiency has been examined via Γ , the ratio of irreversible potential
energy gain to energy lost to friction, and has been found to be highly sensitive to
the appearance of secondary instability. In every example, the onset of secondary
instability was accompanied by a dramatic increase in Γ .

The mixing efficiencies computed prior to the onset of secondary instability agree
with those obtained from three-dimensional simulations at the same Pr (Smyth et al.
2001), suggesting that the assumption of two-dimensionality is valid for the braid
region, at least. However, I have regarded the small-scale details of flow in the core as
suspect, and this has precluded the assessment of instability and mixing in that region.
Even in the braids, the secondary KH instability must compete with braid-centred
three-dimensional instabilities (e.g. Klaassen & Peltier 1991; Cortesi et al. 1998) in
a manner that has not yet been explored. Moreover, the secondary KH instabilities
are themselves expected to become three-dimensional upon reaching large amplitude.
Therefore, a full understanding of the significance of secondary instability in real
mixing events must await the availability of three-dimensional direct simulations
with Reynolds numbers of order 1000 or higher. Computing technology is now
approaching the stage where such simulations are possible, particularly in the low
Prandtl number regime (e.g. Winters et al. 2003).

A theoretical description of the secondary KH instability is probably best obtained
via non-separable stability analysis of the two-dimensional flow (e.g. Klaassen &
Peltier 1989). Unfortunately, such calculations make extreme demands on computa-
tional resources. Both the memory and the processing time needed are proportional to
the squares of the corresponding requirements for two-dimensional simulations with
the same spatial resolution. To carry out a non-separable analysis with a triangular
wavenumber truncation (Klaassen & Peltier 1989; Smyth & Peltier 1993), using the
minimum acceptable resolution identified in § 3.1, would require finding eigenvalues
and eigenvectors of a 105 × 105 complex general matrix! Such a computation is
prohibitively expensive at the present time. Calculations with reduced resolution
sufficient to capture only the main features of the secondary instability are probably
feasible, but still represent a major computational challenge.

A more accessible approach is to treat the braid as a stationary parallel shear
layer and perform a standard normal-mode stability analysis, as was done in § 4.
This analysis quantifies the competition between braid shear and stratification, and
is readily extended to include the effects of viscosity, diffusion and braid tilt on
the growth of the secondary instability. Unfortunately, the normal-mode assumption
demands that the strain be neglected, as its inclusion renders the problem non-
separable. The results are approximately consistent with the empirically determined
behaviour of the secondary billows, but only after application of an ad hoc correction
for strain effects. An empirical criterion for instability based on the normal-mode
growth rate delivers no appreciable improvement over the simpler criterion proposed
by Staquet (1995) using the braid shear. These results indicate that strain effects
are both highly complex and integral to the physics of the secondary instability.
The presence of strain renders the secondary KH instability a much richer physical
phenomenon than its primary counterpart. Its theoretical description presents an
appealing challenge for the future.
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